
Phase diagram of gauge glasses

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3399

(http://iopscience.iop.org/0305-4470/26/14/009)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/14
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1: Phys. A: Math. Gen. 26 (1993) 3399-3429. Printed in the UK 

Phase diagram of gauge glasses 

Yukiyasu Ozbki and Hidetoshi Nishimori 
Department of Physics, Tokyo Institute of Technology, Oh-okayama. Meguro-ku, Tokyo 152, 
Japan 

Received 31 July 1992, in final form 14 April 1993 

Abstract We introduce a general class of random spin systems which are symmetric under local 
gauge transformations. Our model is a generalization of the usual king spin glass and includes 
the Z,, XI', and SU(2) gauge glasses. For this general class of systems, the internal energy and 
an upper bound on the specific heat are calculated explicitly in any dimensions on a special line 
in the phase diagram. Although the line intersects a phase boundary at a multicritical point, the 
internal energy and the bound on the specific hear are~found to be wrihen in terms of a simple 
function. We also show that the boundary between the ferromagnetic and non-ferromagnetic 
phases is parallel to the temperature axis in the low-temperature region of the phase diagram. 
This means the absence of re-entrant transitions. All these properties are derived by simple 
applications of gauge transformations of spin and randomness degrees of freedom. 

1. Introduction 

The *J king spin system is a typical model of spin glasses. When the bond distribution is 
symmetric (that is, the concentration p of ferromagnetic bonds is 1/2), the existence of the 
spin glass phase at finite temperatures has been discussed extensively for finite-dimensional 
systems. The lower critical dimension is now believed to be between two and three [l-31. In 
the asymmetric case ( p  =- 1/2), the phase diagram in finite dimensions with paramagnetic, 
ferromagnetic and spin glass phases has been determined by  numerical calculations [4-8] 
and renormalization group arguments [9]. 

For the problem of the precise topology of the phase diagram of the f J  king model, 
there is a powerful technique to derive a variety of  rigorous and exact results which set 
strong constraints on the topology of the phase diagram [IO]. This technique, the method of 
gauge transformation, shows that the internal energy and an upper bound on the specific heat 
can be calculated exactly as non-singular functions of p or T on a special line defined by 
exp(-2J/kBT) = (1 - p ) / p  in the p-T phase diagram: It has also been established using 
similar ideas that there is no re-entrant transition from the ferromagnetic~phase to a non- 
ferromagnetic phase as the temperature is lowered at a fixed concentration of ferromagnetic 
interactions [ I  1,121. These results also hold for king spin glasses with Gaussian random 
exchange interactions. 

In the case of the classical X Y  model, the lower critical dimension of the usual spin glass 
ordering is believed to be four or larger in the f J - type  random model [13-181, although the 
possibility of chiral spin glass freezing in three dimensions has been pointed out [16,17]. 
Recently another type of a random X Y  model, the X Y  gauge glass, has attracted much 
attention [19-291. It is suggested that the lower critical dimension of the X Y  gauge glass 
lies between two and three [24-29]. Investigation of the phase diagram of these random 
X Y  models is still at a primitive stage compared with the case of the king model. There is 
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controversy about the existence of re-entrance in the weakly random region of the XY gauge 
glass in two dimensions. Some real-space renormalization group calculations suggest re- 
entrance [ 19-21] which Monte Carlo simulations and Migdal-Kadanoff-type renormalization 
group transformations have failed to contirm [22,23,29]. 

It has  been known for many years that the method of gauge transformation is applicable 
to a wider class of models such as the XY gauge glass model [lo], the random Pow model 
[30] and the Ashkin-Teller model [31] to obtain the internal energy, specific heat and 
correlation inequalities. In the present article, we generalize this idea and derive conditions 
on a generic Hamiltonian and the corresponding probability weight of random configurations, 
under which the method of gauge transformation is applicable and similar results to the king 
case can be obtained. Various random models ate included in our framework. ,The system 
may have pair as well as many-body interactions and the symmetry group may be O(n.), Z,, 
SU(n) or any other groups satisfying conditions mentioned in the following sections. We 
show, in particular, that these generd gauge glass systems do not have re-entrant transitions. 
This settles the issue of the existence of re-enFance in the XY gauge glass. 

We introduce a general random system in section 2 and derive exact results. The internal 
energy and an upper bound on the specific heat are calculated exactly on a special line in the 
phase diagram; they are written in terms of a simple function even though the line crosses 
a phase boundary. Useful relations between correlation functions are also proved. These 
are all generalizations of results found in [lo] for the +J and Gaussian king spin glasses. 

The topology of the phase diagram is discussed in section 3 based on the relations of 
correlation functions derived in section 2; In particular, we show that the present model does 
not have a re-entrant transition. One should note that our argument is not a mathematically 
rigorous proof of the absence of re-entrance because we use a plausible but unproved 
assumption of the existence of a ferromagnetic phase in a related (modified) model. This 
is a generalization of the Kitatani argument [ 111 for the absence of re-entrance in the f J  
king model. The point is that the non-trivial problem of the absence of re-entrance in gauge 
glasses has been reduced to the trivial problem of the existence of a ferromagnetic phase in 
the modified model. 

Experimentally, kinglike spin glasses do not have reentrance to a genuine spin glass 
phase without ferromagnetic (or antiferromagnetic) order [32]. The boundary between the 
spin glass and the antiferromagnetic states is vertical to the concentration axis in the phase 
diagram. This is in accordance with our conclusion as well as with the mean-field prediction 
[33]. Many isotropic Heisenberg spin glass materials also show no re-entrance to a simple 
spin glass phase [34-361 without ferromagnetic or antiferromagnetic order. Although our 
argument in the present paper does not apply immediately to such systems because the usual 
model of Heisenberg spin glasses does not have gauge symmetry, we may safely speculate 
that more elaborate models than a simple Edwards-Anderson model should be considered 
to explain the variety of complicated phase diagrams found experimentally (see [37]). 

General arguments in sections 2 and 3 are applied to pair and many-body interactions 
in the remaining sections. 

Y Ozeki and H Nishimori 

2. Gauge transformation in random spin systems 

This section represents a generalization and reformulation of the theory developed in [lo]. 
Our strategy is +rst to introduce a non-random system and then to go on to define a 
corresponding random model which incorporates gauge invariance. It may be useful to 
notice beforehand that the group element & used below is a generalization of the Ising spin 



Phase diagram of gauge glasses ,3401 

variable Si, and w corresponds to .Iij of the i J  king model. It is important that the group 
of w has a symmetry equal to or higher than that of r p j  (Z? for rpi and o in the +J Ising 
model) for the whole argument to hold. 

2.1. Phase space and non-random system 

We restrict our attention to classical spin systems in the present paper. Let A be a set of 
N lattice points. We assign a spin variable 4; E Q with a non-negative measure d& ( q i )  
at each site i E A. The set @ is the space of spin states at one lattice point. We denote 
[ r p ]  = (rp, ,  . , . , rpN)  E @" a spin configuration of the total N-spin system. The measure 
of ($1 is expressed as d p  { r p )  = n,,, d@ (4;). For simplicity, we treat a system with a 
single coupling constant J > 0. Generalizations will be discussed later. The non-random 
Hamiltonian is denoted by 

%I41 = J%o(bl (2.1) 

where go{rp) is the dimensionless part. The thermal average is expressed as 

(...), =Zo(K)-'  dp{$)...exp(-K%o[q5)) (2.2) s 
where K = ,9 J > 0, and 

Z ~ W )  = /"dp{rp)exp(- Kgo[rpI). (7.3) 

First, we assume the following condition on the set 0 and the measure dp (&). 

Condition I. 
forms a group .(Abelian or non-Abelian). 

Then the group 0 is called a topological group [3&40]. The identity is denoted as @E and 
the inverse of @ is written as 4  in^ this group. For each i E A, one can introduce a set 
of induced transformations, U:) with 9 E @, in the space of functions of @; through the 
definition, 

There exists at least one kind of operation, .denoted by 4 o 9, such that @ 

. 

up : rp; + rp; = rpL 0 $. 

U:) forms a group isomorphic to 6 for each i E A as 

(2.4) 

(2.5) = 
4 

for all 0,  11. E e. If 0 is non-Abelian, U$) should be distinguished from ~ ~ 

5;) : rp; + rp; = @ O r p i  (2.6) 

which is also isomorphic to @. The conjugation operator 

U!) : $j + $; = qi (2.7) 
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is also defined. The measure d p  (@i) is taken to be invariant under the transformations U;), 
5;) and U t )  for all @ E Q, in the sense. that 

[ dp (@i )U$) . . .  = [ d p ( @ i ) . . .  (2 .8~)  

dp(@i)U:'...= dp(@i)". (2.86) 

d p  ( & ) U t )  . . , = (2 .8~)  

Y Ozeki and H Nishimori 

s - ' J  
s J d p  (@i) . . . 

or, equivalently, 

d p  (hi) = d p  (@i 0 @) = d p  (6 0 @i) = d p  (&I. (2.9) 

If Q, is compact or Abelian, such an invariant measure exists [3840]. We assume that Q, 
is compact and denote the volume by c 

c = 1 d p  (&) < CO. (2.10) 

The non-compact case is discussed in the appendix. 
It is instructive to demonstrate the above equations in the case of the Ising system 

@ j  E [ -1 ,1]  = Q,. The operation @ o II. is regarded as the product @II. with 6 = @ and 
@E = 1. Then U;) and 5;) areequivalent, and U:) transforms @i + -@i. Equations (2.8a) 
and (2.86) mean E,=*:, f(@i)  = f (@@i) = f ( 1 )  + f(-1) for any function f(.) 
and II. = f l .  

Three types of transformation in the space of functions of [@} are introduced. These 
are the gauge transformation induced by [@) E QN, the global transformation induced by 
@ E Q, and the global conjugation defined as 

(2.11a) 

(2.116) 

(2.11c) 

respectively. One finds that U,,, and 5, form groups isomorphic to ON and Q,, respectively. 
From yuation (2.8), the measure d p  [@I = ilidp (@i) is invariant under the transformations 
U,,], U ,  and U, as 

In most interesting cases, the non-random Hamiltonian is invariant with respect to the global 
transformation U, and the global conjugation U,. 
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2.2. Random system 

Let us consider NR quenched random variables U,, E C2, (n = 1,2, . . . , NR). The set Q, is 
the space of random configurations of w,,, with a non-negative measure dun (w,). We denote 
{w) = (01, . . . , UN,) E Q,,, a random configuration of the total Nk-random variables. where 
Q,,, Qn. The measure of (w}  is expressed.as du (0) = lJ:Zl dun (w,). 

In order to construct a gaugesymmetric random system as a generalization of the non- 
random Hamiltonian @.I), we introduce 

W@)(wJ = J i i N ) l w l  (2.13) 

with the probability weight P(K,, ( w ] ) ,  where the real parameter Kp(> 0) controls the 
randomness. In equation (2.13). we explicitly indicate the dependence on the sets ~[@) 
and (U) .  The actual form of the Hamiltonian (2.13) will be specified for each problem 
so that the conditions below are satisfied. The thermal average (. . .), and the partition 
function Z(K, {U)) are now expressed as in equations (2.2) and (2.3) with 'MO{@) replaced 
by ~ [ @ ) ( W ) .  The average over random configurations is defined by 

[...]K~ dv(w)P(K, , (~)) . . .  . .. . (2.14) s 
We introduce NR kinds of local gauge transformations 

v;; : U, + w:, E Qn (2.15) 

in the space of functions of w, (n = 1,2, ..., N R ) ,  each of which depends on the set 
(11-1 E ON and is homomorphic to ON. The (global) gauge transformation defined by 
VI*] nfZ, V$i forms a group homomorphic to QN. We assume that the following three 
conditions hold on V,,], du ( w ) ,  3t(@)(o) and P(K,, (0)) for all {q) E ON. 

Condition II. The measure du [o} is an invariant measure in the sense that 

dv (o)VI,l.. . = du (0). . . . ~ ~ (2.16) s s 
A sufficient condition for equation (216) is that each dun (w,J is an.invariant measure 

dv, (w.) V$ . . . = J du (w,) ,;. . (2.17) s 
(2 .18~)  

(2.186) 
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Condition IV. The probability weight P(K,, [ w ] )  is transformed by V,,] as 

V[!hlP(K,, (wl) = Y(Kp)-'DIwIexP ( -  ~,%M4) 

where D [ w )  is an invariant function with respect to V~*J. 

Using equation (2.18a), equation (2.19) can be rewritten as 

(2.19) 

P(&, (4) = Y(Kp)- ' W I e x p  ( -  K p % 4 d ( ~ 1 )  (2.20) 

where [ 4 ~ ]  E Q N  represents that $; = 45 for all i E A. From the normalization condition 
[ 1 ] ~ *  = 1, we find 

YW,) = 1 dv I ~ D ( ~ I ~ X P  ( - K,%%IIwl). (2.21) 

When Kp = 0, the probability weight becomes uniform (or independent of the random 
variables) except for the invariant part D [ w ] .  It is natural to construct a model so that the 
non-random case is recovered in the limit of K ,  + CO. See examples in later sections. 

The following condition is required only in the discussion on the topology of the phase 
diagram. Anyway, most interesting cases satisfy this condition. 

Condition V. The Hamiltonian is invariant under any global transformations as 

w-&mJl = Xk#Wl. (2.22) 

As an example, the Hamiltonian of the f J  king model is a summation of local terms 
-Jwjj@j#,, where oij E [-1,l) = Q. The local gauge transformation V$/ is defined 
by wjj -+ wij$j$j with $j, $j =~~ f l .  Equation (2.17) means Cw,,=*, f(wjj) = 
E,,=+, f(wij$i$j) = f(1) + j ( - 1 )  for any function f(.). Since each local term of the 
Hamiltonian, -Jwij@jq+, is unchanged by the transformations 41 -+ @ j $ j ,  $1 + $j$j and 
wij + wij$i$j, it is easy to see the invariance of equation (2.18a). The probability weight 
of wjj is taken as exp(K,wij)/2cosh K,. If p is defined by exp(-2Kp) = (1 - p)/p,  this 
probability weight gives p if wjj = 1 and 1 - p otherwise. which is the usual weight of the 
i J  Ising model. The parameter K p  tends to infinity as p + 1 (the non-random case) and to 
0 as p approaches 1/2. The probability weight is transformed to exp(Kpwij$i$j)/2cosh K, 
by V$), and equation (2.19) holds with D[w]  = 1. 

2.3. Gauge invariance, internal energy and specific heat 

We understand that each transformationoperator acts on all functions following the operator. 
If the operator is rounded by brackets of my kind, it acts only within the brackets. From 
equations (2.16), (2.18) and (2.(9), the configurational average of a function Q[w] is 
expressed as 

[ Q ( 4 I K ,  = 1 du ~ w l v w i  P(Kp, (4) Q b ~ l  
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Since the left-hand side of equation (2.23) is independent of (@I, we may integrate it by @ 
and divide the result by the volume of the ($]-space: 

Phase diagram of gauge glasses ~. ~. 

[QlwIIx, = Y(K , ) - 'C - '~~~L(@JS~Y(WJD(W}~~P(  - ~ , % I @ J ~ J I ) ( ~ ~ , I Q ~ U I )  

= Y(K,)-'c-' / d u  (o1D(w)Z(K,.  {wJ)(!&Q{m]~" KP (2.24) 

where 

( . . . ) X I  = Z(K,. (U])- '  !do ($)exp( - Kp<($J(wJ)  .... (2.25) 

If Q(w]  is gauge invariant 

V ~ e i Q I w l =  Qb) (2.26) 

for all @ E ON, equation (2.24) is rewritten as 

[Q[wl],, = U K , ) - ' C - ~  s d u  ( 4 D ( 4 Z ( K p ,  b I ) Q ( m l .  , (2.27) 

Using the invariance properties of equations (2.12~) and (2.184, we find 

VWZ(K. (4) = / d p  (dJ4$th$t exp ( -  K~&+V(UJ) 

(2.28) = / d p  l@J exp ( - K'%dJ(@l) 

which means that the partition function is gauge invariant. In general, the average of a 
function of the Hamiltonian, such as the internal energy E or the specific heat C, is gauge 
invariant from condition III. 

The parameters K and K,, are independent of each other. However, if we impose the 
condition K = K,, some exact results can be derived; the factor Z(K,. ( U ] )  on the right- 
hand side of equation (2.27) is equal to the partition function Z ( K ,  (01)) appearing in the 
denominator of Q(u] (if it is the thermal average of a physical quantity), and these two 
partition functions cancel out if K = K,,. The condition K = K,, is equivalent to restricting 
ourselves to'a subspace of the phase diagram, a generalization of the Nishimori line [lo] 
of the +J model, as will be shown later. Note that equation (2.21) is rewritten as 

. .  

Y ( K i )  =~ du b ) V [ * I W ) e x p (  - Kp%(dd(wJ) s 
= c-' ! d p  1 du ( ~ ~ ( W J  exp ( - K p @ @ ) ( 4 )  

= C-' dv { w ] D [ w J Z ( K , ,  [w] ) .  (2.29) s 
Using equation (2.27). the internal energy is calculated as 
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which reduces to - ~ 
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E(K,, K,) = -JY(K,)- I c - N L  

aKP 

(2.30b) 

if K = K,. Similarly, the upper bound on the specific heat is estimated as 

If K = K,, the same argument as above leads to 

(2.31b) 

These results are easily modified when the origin and/or $e scale of the energy are changed; 
when the Hamiltonian is changed as f?[@)[o) 4 a + bZ{@)(o} with arbitrary constants a 
and b, the above results hold by modifying them as In Y ( K , )  -+ -aKp +InY(bKp). 

2.4. Correlation functions 

Results in the present and next subsections will be useful for discussions on the topology 
of the phase diagram presented later. Let us consider an irreducible unitary representation 
of CJ (not the identity representation) denoted by y(@). The representation satisfies 

(2.32n) 

(2.32b) 

where E is the identity matrix, and yt@) denotes the adjoint matrix of ~(6). Note that if CJ 
is Abelian, y (4) is a complex number. From the orthogonality of irreducible representations 
of a compact group [38-40], one finds 

Let us consider two types of two-point correlation functions, 

(2 .34~)  

(2.346) 
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for 0. r E A. The operation Tr.. . means the trace of the matrix, which plays no role if 
4, is Abelian. In the case of the i J  king model (bi = fl) ,  the correlation functions fy 
and g ,  correspond to the usual ferromagnetic correlation function [ ($o@, )~ ]~ ,  and the spin 

glass correlation function [(5b04r):]K,, respectively. 
From equations (2.124, (2.18) and (2.32), the thermal  average^ ( y (&  ob,)), is 

transformed as 

V [ + l ( y ( & o b r ) ) K  = Z ( K ,  bl)-’/”d~{6lV;&,iexP( - K % I l w l ) ~ ( $ ~ o b , )  

= Z ( i .  bI)-’/dw{b)exp ( -  K j i ( b ) ( o l ) ( U c + ~ ~ ( ~ ~ b ~ ) )  

= Z ( K ,  {wI)-’ /” d k  lbl exp ( - K’&$I@I)Y(@o 0 60 0 br 0 qr) 

= Y ( @ o ~ ( Y ( ~ o o b ~ ) ) n Y t ( + ~ ) .  (2.35) 

Using equations (2.24) and (2.35), we obtain 

l y ( r ;  K, K,) = Y ( K J ’ C - ~ / ”  du ( 4 D ( w I Z ( K p ,  ( ~ ~ ) T ~ ( Y ( ~ O O O , ) ) ~ ( Y ~ ( ~ O ~ ~ ~ ) ) ~ , .  

(2.36) 

To simplify equation (2.36), we note that the product Tr(y(& ob,) ) , (y ’ (~o ob?)), is 
gauge invariant since from (2.35) 

Vie) T& (40 0 br))z (Y ($0 0 br))x.i 

=- Tr Y (@o) (~($0 0 

Therefore equations (2.27) and (2.36) yield 

Y’ ( + r ) ~  ( @ r )  (Y (40 0 b r ) ) x j  Y ‘(@o). (2.37) 

2.5. Modified model 

Kitatani [ll] showed by using a model with a slightly different probability weight from 
the usual i J  Ising model that this latter model does not have a re-entrant transition. We 
generalize his idea to the model introduced above. The Hamiltonian (2.13) remains the 
same in the modified model. The probability weight and the configurational average are 
replaced by 
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and 
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(...}"K, 11 du(w)P,(K,,(ar))... (2.41) 

with a fixed real value a. The normalization condition (1%, = 1 is satisfied; from 
equations (2.27). (2.29) and (2.40). 

= Y(K, , ) - 'c-~ 1 du (w)D(o)Z(K,, [U)) = 1. (2.42) 

We call this model the modified model with a. 

transformed as 
According to equations (2.19) and (2.40), the probability weight P,(K,, [U}) is 

Then, similarly to equation (2.24), the configurational average of a function Q(u) is 
expressed by 

{Qlo1Gn = / d u l w l V i n ~ ~ ( K p .  1 ~ I ) Q b l  

x exp ( -  (KP +4%blW)(V~Qk~l )  

= Y(K,)-'c-~ j d u  IuIDIW(K,, ~ ~ ) ( V W I Q ~ ~ I ) ~ ~  (2.44) 

where (. . .)I*' is defined by equation (2.25). If Q(u) is gauge invariant, V ~ ~ l Q ( o }  (= Q(u)) 
is independent of (+I. In this case we find from equations (2.27) and (2.44) 

4 

(Qbl]ip = [ Q ~ u ) ] ~ , .  (2.45) 

Equation (2.45) shows that all gauge invariant quantities are independent of a, and equal to 
those in the original model (which corresponds to the a = 0 case). 

Let us consider the correlation functions 
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which is rewritten from equation (2.27) as 

f , (r;  K ,  K,) = [ TMQ;~ 0 #,)LW+(Q;~ 0 mKp+a] . 
K# 

(2.48) 

The product Tr(y(& o #,))x(yt(& o CJL))~, is gauge invariant as is verified from the 
transformation property in equation (2.37). Since gauge invariant quantities have the same 
value for any a-as shown in equation (2.45), we find 

f ; ( r ;  K ,  KJ = [ T ~ ( Y G ~  0 ~ ~ ) ) ~ ( y + ( ~ o  0 w),++~}:,. (2.49) 

Comparison of equations (2.466) and (2.49) yields 

f ; ( r :  K,  +a, K,) = g;(r; K,+a, K p )  (2.50) 

under the condition K = K p  + a .  

are derived from equations (2.45), (2.48) and (2.38) as 
Relations of correlation functions between the modified model and the original model 

g;(r ;  K ,  K p )  = gy( r :  K ,  K,) (2.51) 

and 

. f;(r; Kp .  KO) = fv(r; K ,  +a.  Kp)' (2.52) 

where the asterisk denotes the complex conjugate., Applying equation (2.48) to two distinct 
modified models with a and b with equation (2.45) taken into account, we find that the 
following relations hold between two modified models with a and 6 ,  

g; (r ;  K ,  K,) = g; ( r ;K ,  K,) (2.53) 

and 

f ; ( r :  K,  +b, K,) = f,!(r; K ,  + a ,  IT,)*. (2.54) 

2.6. Multi-coupling model 

The present theory can be generalized to accommodate multi-spin couplings, 

'Io [ @] = - J (4 5" 
0 

n 
(2.55) 

The dimensionless constants will be written in a vector notation K = ( K " ] ,  KO) ,  . .;), 
where K(") = BJ'"). The probability~  weight^ has a set of corresponding parameters 
K,, = ~ ( K F ) ,  K f ) ,  :. .). By similar arguments as above, the intemal energy and the specific 
heat are obtained under the condition K = K p  as 

All results in previous subsections hold by replacing K and K p  with K and K,. 
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3. Long-range order and topology of the phase diagram 

3.1. Order parameters 

We assume that condition V in section 2 holds, which requires a global symmetry of 
the Hamiltonian, in order to define the ordered phases. From condition (2.33) with 
equation (2.221, we find 

Y Ozeki and H Nishimori 

for all i E A. Equation (3.1) means that the Gibbs measure of a configuration (U) ,  

d p  (@) exp ( - K7d(@]{o))/Z(K, {U]), has the global symmetry and consequently there is 
no spontaneous symmetry breaking in finite systems. A comment on a symmehy-breaking 
field is in order. If an external field such as 

is added to the Hamiltonian, the global symmetry of equation (2.22) and the symmetry 
(y(@i)) ,  = 0 are simultaneously broken. Note that the system~with the external field (3.2) 
is not gauge-symmetric since it does not satisfy conditions Ill and IV. Thus we treat the 
case of L = 0 in this paper. 

It is understood throughout this section that the thermodynamic limit (N  + CO) has 
already been taken in the correlation functions f, and g,. The order parameters are defined 
by 

- 
m,(K ,  KJ = ! l s [ f y C r ;  K, ~ ~ ) l  (3.3a) 

- 
q,W, K p )  = l h  g,(r; K, K p ) .  (3.3b) 

Finiteness of my indicates the existence of ferromagnetic long-range order. In the %J 
king model, my is equal to the long-range limit (r + CO) of the correlation function 
[(@&)K]K~. The second quantity qy corresponds to the spin glass order parameter, 
[ ( & , @ r } $ ] ~ ,  in the limit r --f 00, of the i J  king model. In both of these order parameters, 
it is not necessarily mathematically trivial that finiteness of long-range order (3.3) readily 
implies symmetry breaking defined by-finiteness of a one-point function in the infinitesimal- 
field limit. Although equivalence of these two concepts is usually taken for granted, our 
discussions in this paper will be made only in terms of long-range order (3.3) to avoid 
confusion. 

The same order parameters as in equation (3.3) are defined in the modified model. For 
the ferromagnetic order parameter, 

r-m 

m;(K,K,) - r g l f ; ( r ; K , K p ) l .  (3.4) 
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The order parameter qy is identical to the original case (a = O), since it is gauge invariant, 
see equation (2.45). Two kinds of ordered phase can be considered; 

m y  = 0 qy  = 0 (paramagnetic phase) (352)  

my  > 0 qy =- 0 (ferromagnetic phase) (3.5b) 

m y  = 0 qy  =- 0 (glass phase). (32%) 

The case m y  > 0 and qy = 0 is unlikely to exist and will be excluded hereafter. 

topological order [41,42], one may define correlation lengths as follows 
If the non-random system has no long-range order but has Kosterlitz-Thouless (KT)-like 

(3.6a) 

(3.6b) 

with 

f < +CO - e +CO (paramagnetic phase) ( 3 . 7 ~ )  

f = +CO $ = +cu (uniform KT phase) (3.7b) 

f < +cu = +cc (random KT phase). (3.7c) 

In the uniform KT phase there is no long-range order and the correlation functions f r ( r )  
and gy( r )  decay in power laws. The random KT phase has an exponentially decaying 
ferromagnetic correlation f y ( r )  and a power-decaying gy(r) .  

Note that we are discussing the possibilities of various ordered phases, not proving their 
existence. The arguments in the following sections are about the possible shapes of the 
phase boundary of the ferromagnetic (or uniform KT) phase when this phase  occupies a 
finite~region in the phase diagram. The existence of a glass (or a random KT) phase will 
not be necessary. 

3.2. Topology of the phase diagram 

We discuss the topology of the phase diagram in the KO-K plane around the multicritical 
point. We treat the case with the following properties. 

(i) There exist at least two phases, paramagnetic and ferromagnetic. 
(ii) The system is paramagnetic when K is sufficiently small. 
(iii) The system is ferromagnetic when K and K p  are sufficiently large, including the 

region with large but finite K in the non-random case (K,' = CO) and large but finite K,  in 
the ground state ( K  = ca). 

We draw the phase diagram with the axes of K ,  and K .  The boundary between ttie 
ordered and paramagnetic phases (OP boundary) marks the onset of finite qy since both 
ordered phases in equation (3.5) have qy  > 0 (figure 1). We express this boundary line by 
its intersection with the line K = K,  + x as 

( K ,  K,) = (&(XI + x ,  KdxII. (3.8) 
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Figure 1. Schematic phase diagram in the Kn-K 
plane. The right bottom point has (K,,, K )  = (w. ea), 
the zero-tempcram limit of the non-random system. 
The value of K, increases from left to right along the 
Kn axis and that of K increases from top to bottom 

the boundq  between the ordered phase (OP) and 
the paramagnetic phase (PM). The three broken lines 

K4a)  KdO) K4-a)  03 indicating K = K p ,  K = Kp + a  and K = K , - a  are 
typical examples for the definition of the location of the 

along the K axis. The bold curve is the OP boundary, 
-.. 

KP OP boundary. equation (3.8). 

The position of a point on the OP boundary (the bold curve in figure 1) is parametrized by 
x .  For instance, x = 0 means the point with K = K,, since K = K,(O) and K,, = K,(O) 
from equation (3.8). If x > 0, K = K,  + x means K > K,, and the corresponding point on 
the OP boundary lies below the line K = K p  (the point with the K axis K = &(a) + a  
in figure 1). A point above the line K = K p  on the phase diagram has a negative x .  Our 
discussions will be restricted to the region around K,, = K,(O) which is a multicritical 
region as will be seen later. 

First, we consider the original model (a = 0 in the modified model). Taking the limit 
of r -+ 00 of the absolute values of both sides of equation (2.39), we obtain 

m,(K,. K,) =qy(Kp, (3.9) 

from the definition (3.3) of the order parameters. This implies the absence of the glass 
phase on the line K = K p  in the phase diagram since the glass phase has q y  > my = 0. In 
other words, the line K = K, does not enter the glass phase (if any). Thus, on K = K,,, 
the system is ferromagnetic on the low-temperature side K p  > Kc(0), and paramagnetic if 

Next, we show that no ferromagnetic phase exists for any K (any temperature) in the 
region K, < KJO) in the phase diagram of the original model (the region on the left- 
hand side of the vertical dotted line at K,, = K,(O) in figures 1 and 2) by comparing its 
behaviour with that of the modified model. Taking the limit of r + CO on both sides of 
equation (2.52), we obtain 

K, -= K m .  

m;(K,, K,) = m,(K,, +a, K p ) .  (3.10) 

Let us first remark that the shape of the OP boundary is independent of the parameter 
a since the OP boundary is defined in terms of q,, which does not depend upon a from 
gauge  invariance.^ Thus the OP boundary of the modified model is parametrized as in 
equation (3.8) for any a. By definition, the modified model with a is paramagnetic above 
the OP boundary. Thus m;f(K = K,, K,,) = 0 when K,, < Kc(0) since K = K,, KJO) 
implies considering the left-hand portion of the line K = K p  lying above the OP boundary 
(marked with dashes and dots in figure ~(LJ)). According to equation (3.10). m;f(K,,, K,) = 0 
leads to m,(Kp + a, K,) = 0. This latter relation indicates that the original model is not 
ferromagnetic when K = K ,  + a with K, <: &(a). The condition K = K,, + a with 
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K,  c K,(O) corresponds to the left-hand portion of the line K = K, + a denoted in a 
chain curve in figure Z(a). Since the above argument holds for any a,  we may conclude 
that the original model is not ferromagnetic at any point with K, < KJO) (region on the 
left-hand side of the dotted line at K,  = K,(O) in figure 2(n)). Consequently, the boundary 
between the ferromagnetic and glass (or paramagnetic) phases (to be called the~F boundary 
hereafter) does not lie in the region K p  < K,(O). Allowed shapes of the F boundary are 
schematically indicated in figure 3(a) by (v) (vertical) and (r) (reentrant). 

(b) Fig. 2b 

K 

Figure 2. The Kp-K plane introduced in figure 1 far (a) the original model and (6) the 
modified model with a > 0. The ferromagnetic order panmeter on the line K = Kp + n in 
the original model is idenlical lo that on K = K, in the modified model; both &e indicated 
by chain and bold lines in (a )  and (6). The chain part indicates the region where the system 
should not be ferromagnetic. The bold p31t indicates the region where~lhe system is allowed to 
be ferromagnetic. . .  

The same argument shows that the F boundary of the modified model with any a is 
either vertical or re-entrant. A generalization of equation (3.10) is 

m;(K,, + a ,  K,) = m;(Kp  + b, K,,). (3.11) 

which is derived from equation (2.54). We note that the line K = K p  + a  does not enter 
the glass-phase (q; > m; = 0) because m; = q; when K = K, + a from equation (2.50). 
Hence the ordered phase on the line K = K,, +a should be ferromagnetic. By replacing x in 
equation (3.8) with a, we recognize that the modified model with b on the line K = K,, +a 
(whose order parameter is on the left-hand side of equation (3.1 1)) is critical at K,  = K,(a). 
Consequently mb,(Kp + a ,  K,) is zero for K, < K,(a). Equation (3.11) immediately 
yields that the modified model with U is not ferromagnetic on the line K = K, + b with 
K,, < K&): This last result holds for any b. Therefore the F boundary of the modified 
model does not lie on the left-hand region of the vertical line at K p  = K,(a). The allowed 
F boundaries are indicated in figure 3(b) as (v) (vertical) and (T) (reentrant). 
~. For   the f J  king model, Kitatani [ll] developed an argument to show that the F 
boundary is, in fact, vertical (indicated  by (v) in ligure 3(a)) to the Kp axis in the K,,-K 
plane in the original model, which means the absence of re-entrant transitions (indicated 
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(4 

Figure 3. The Kp-K phase diagram in the case that pyamagnetic (PM), ferromagnetic (m) 
and glass (G) phases appear for (a) the original model, (b) the modified model with a > 0 and 
-0 c 0. Possible F boundaries are indicated as vertical (v) and re-entrant (r). 

by (r) in figure 3(a)). We apply his method to the present general model. It is natural to 
assume that the ordered phase of the region K e K p  + a  (above the line K = K p  + a) 
is ferromagnetic, not a glass, in the modified model with a, because this regime is located 
between the lines K = K, + a  and K p  = ca (the non-random limit), both of which are 
femomagnetic for large K(> K,(x)  + x ) .  This is a reasonable but unproved assumption. 
We thus refrain from claiming that the present argument is a final proof of the absence of 
re-entrance. 

Since the line K = K, lies in this region above K = K p  + a  if a > 0 (figure 2(b)), 
m;(K,,, K,,) > 0 holds when K, > K,(O) on the line K = K p  (indicated by the bold curve 
in figure 2(b)). This implies, from equation (3.10), m,(K,,+a, K p )  > 0 if and only if 
K,, > KJO) (indicated by the bold curve in figure 2(a)). In other words, the ferromagnetic 
phase extends from K p  = 00 to K,, = K,(O) on the line K = K,, +a in the original model. 
Since this argument holds for any a, we conclude that the ferromagnetic order parameter is 
finite below the OP boundary at any K,, satisfying K, > K,(O). The F boundary is thus 
vertical. This fact was anticipated from various analyses [5-7,121. 

We have derived various properties of the gauge-symmetric model which satisfies 
conditions I-V. If the system has the three phases defined in equation (3.5), the phase 
diagram has the generic topology shown in figure 3(a); the F boundary is vertical at 
K p  = K,(O) and intersects the OP boundary and the line K = K p  at the same point, 
a multicritical point. Note that the present theory gives no information on the existence 
of the glass phase or the precise locations of the critical points. One should employ other 
methods, such as Monte Carlo simulations, to answer these questions. If the glass phase 
does not exist, the vertical F boundary separates the ferromagnetic and paramagnetic phases. 
This holds because we have not used the existence of a gIass phase in the above argument. 

It is possible to apply the above argument to the modified model with a using 
equation (3.11) with b > a. It is natural to consider that the ordered phase of the region 
K e K,, + b above the line K = K,+b is ferromagnetic, not a glass, in the modified model 
with b(> a). because this regime is located between the lines K = K ,  + b and K - 00, 
both of which are ferromagnetic at large K. Since the line K = K,, + a  lies in this region if p :  



Phase diagram of gauge glasses 3415 

b > a, m:(Kp +a ,  K p )  > 0 holds when.K, > Kc@) (the right-hand region of the vertical 
line at K p  = &(a)). This implies, from equation (3.11), m;(K, + b, K p )  > 0 if and only 
if Kp > K,(a). We find that the E boundary in any modified model is vertical to the K p  
axis in the K,-K plane; the line (v) in figure 3 is realized. 

The modified model has the following interesting property. As has been pointed out by 
Kitatani [ 111 in the special case of the r t J  king model, it is possible to construct a model 
with a glass phase in any dimension if there exists a finite region of'the ferromagnetic 
phase. More precisely, a modified model with negafive a has &(a) > K,[O) (figure 1). 
This means that the ordered phase in the range Kc(0) e K p  < K,(a) is not ferromagnetic 
since K,(a) marks the lower bound of the ferromagnetic phase of the modified model with 

The above argument gives an explicit  example^ in which the lower critical dimension 
of the glass phase is equal to that of the existence of a finite region of the ferromagnetic 
phase. The only restriction is that the distribution of randomness should follow that of the 
modified model (2.40) with negative a. 

U. 

3.3. Kosterlitz-Thouless phase and other possibilities 

If the~non-random system has no long-range order but has KT-like topological order, one 
may define the ordered phases using the correlation lengths in equation (3.6). Then a similar 
argument as above can be made for the three phases in equation (3.6). It suffices to replace 
finiteness of my and m; in the preceding paragraph by divergence of t in equation (3.6~) 
and the corresponding < a  from the modified model. It should also be remembered that 
equation (2.50) guarantees that the divergence of the usual ferromagnetic correlation length 
f a  is equivalent to that of the glass correlation length if K = K p  + a  in the modified 
model. This means that the~line K = K, + a does not~enter the random KT phase (if 
any). The function K,(x)  is again defined as the boundary of the paramagnetic phase. The 
conclusion is that the boundary of the uniform KT phase (KT boundary) is shown to be 
vertical to the K p  axis below a multicritical point; it is at K p  = Kc(0) in the original model 
and at K p  = &(a) + a  in the modified model with a (figure 4). 

If the non-random system has both KT and ferromagnetic phases, then the paramagnetic, 
KT and ferromagnetic phases appear in sequence as K increases. It is necessary to modify 
equation (3.5~) as 

m , = O  q y = O  (paramagnetic or KT phase). (3.12) 

The arguments presented so far apply to.both the KT and F boundaries. We conclude the 
verticality of both boundaries as shown in figure 5. 

The fact that the non-glass ordered phase is ferromagnetic (or m-type) is not essential 
in the above argument for the topology of the phase diagram. If the non-random system has 
a different type of ordered phase, whose order parameter can be defined from f y ( r ;  K ,  K,), 
the same argument can be made for the paramagnetic, gauge glass and new phases. If 
there are several types of long-range order, it is necessary to introduce other irreducible 
representations y,, yz etc. Then a similar argument can be developed as above. 

4. Applications to pair interactions I 

the present section, we consider a system of pair interactions with local random variables 
associated with each pair. Let AB C A 13 A be a set of N ~ ~ p a i r s  of sites in A. The 
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F i y r e  4. The K,,-K phase diagram is shown in the 
case that the System has paramagnetic (PM). uniform KT 
(um) and random m (KT) phases. The bold curve is 
the OP boundary. The vertical bold line at K,, = K.(O) 
is the M boundary. 

Figure 5. The K,-K phase diagram is shown for the 
case in which the system has paramapetic, uniform KT, 
random in, ferromagnetic and glass phases, The bold 
curve is the OP boundary. The vertical bold line at 
K,, = Kc(0) is the F boundary. Two possibilities for 
the boundary of the uniform in phase are indicated by 
the dotted curves; in one of these, the KT boundary is 
identical to the F boundary 31 Kp = Kc(0). 

non-random Hamiltonian is assumed to have the form 

(4.1) 

where a pair ( i j )  is taken only once in the summation. Since the function E ( $ )  should be 
real, it is necessary that 

E ( # )  = E ( $ )  (4.2) 

for all q4 E 0. Further, we assume 

WJ 0 1G-) = &(1G- 0 4)  (4.3) 

for all @, 1G- E @. Equation (4.3). which is trivial if 0 is Abelian, is needed for the global 
symmetry of the random Hamiltonian, equation (2.22), to be introduced later. Equation (4.3) 
is satisfied if E($ )  is a function of characters of representations of 0. 

We introduce a class of gaugesymmetric models associated with the non-random 
Hamiltonian (4.1)-(4.3). We assign a random variable wij E @ to each bond (ij). The 
space 0 to which wii belongs and the measure dfi (w~j) are chosen to be the same as those 
for the spin variables. Thus nmt = QNB, and du (0) = n(ij)sAe d p  (oij). The Hamiltonian 
and the probability weight are chosen to be 

and 



Phase diagram of gauge glasses 3417 

where I ( K J  is a function determined by the normalization.  the^ gauge transformation 

V,,, = n(v)e,,s is constructed as  the^ local transformation 

v:; 0 , : wij -+ U! .  ‘ I  = *i 0 0’. 1J 0 $. I (4.6) 

by assuming i > j .  Ordering site numbers is necessary since, in general, the transformation 
(4.6) is different from * j  ooijol/r,.~Note that V z i i  forms a group homomorphic to a*, and 
V,,, is homomorphic to a’. Thus it is easy to see that the above system satisfies conditions I 
to V. Consequently, if the non-random Hamiltonian is expressed by equation (4.1) with 
equations (4.2) and (4.3), one can derive an associated gauge-symmetric random model of 
equations (4.4) and (4.5) For any @, Abelian or non-Abelian. Note that equations (4.4) 
and (4.5) are not the only possible way to derive a gauge-symmetric random model from 
equations (4.1)-(4.3). One of the other possibilities is discussed in the next section. 

From equations (2.21) and (4.5). we obtain the normalization factor as 

Y ( K , )  = I(K,)’. (4.7) 

I W , )  = / d p  (oij) exp (K,&(wi j ) ) .  (4.8) 

The general result of equations (2.30b) and (2.31b) can be written with equation (4.7) as 

a 
a K ,  

E(K,,, K,,) =-NBJ-I~II(K,,) (4.9) 

(4.10) 

on the line K - =  K , .  Usually, the function l(K,,) is analytic since it is obtained by the 
integration (4.8) with respect to a local variable. Thus, the internal energy has no singularity 
and the specific heat does not diverge on K = K,,. The phase diagram has the topology 
of figure 3(a); the F boundary is vertical and intersects with the OP boundary and the line 
K = K ,  at the same poinr a multicritical point. 

In the following subsections, we discuss several examples of gaugesymmetric models 
in the above class. 

4.1. *.l Ising model 

The non-random king model with pair interactions is written as 

%(@I = - J  @i@j (4.11) 
( i j )€hs  

where the function E was chosen to be 

E ( @ )  = @ (4.12) 

with @ E (-1,l)  = Cp. The operation r$ o $ is regarded as the product @@ with 4 = 4 and 
@E = 1. and the integration of the phase space is given by 

(4.13) 
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The Hamiltonian and the probability weight of the associated random system are 
expressed as 

(4.14) 

(4.15) 

where wij E [-I, 1) = 0. This is called the i J  king model. If we define p by 

exp(--2Kp) = (1 - P ) / P  (4.16) 

the f J  king model satisfies equations (4.1>-(4.5). Then, from equations (4.8)-(4.10), we 
obtain 

I (K,,) = 2 cosh Kp 

E(K,, Kp) = -NgJtanh Kp 

ksTZC(K,,, K,,) < NBJ2sechZ Kp 

(4.17~) 

(4.17b) 

(4.17~) 

on the line K = KO which is called the Nishimori line [lo]. 
The correlation functions in equation (2.34) are defined through the trivial representation 

v ( @ ) = @ .  (4.18) 

In the case of the nearest-neighbour interactions on hypercubic lattices, paramagnetic, 
ferromagnetic and spin glass phases are likely to exist when d > 2 [I-81. The phase 
diagram has the same topology as in figure 3(a); the F boundary is vertical and intersects 
with the OP boundary and the line K = K,, at the multicritical point. 

At K, = 0 (or p = 1/2 from equation (4.16)). the existence of the spin glass phase 
at finite temperatures has been confirmed in three dimensions but has been refuted in two 
dimensions by several methods [I-31. The phase diagrams in the region Kp > 0 for two 
and three dimensions have been obtained by numerical methods [&SI and the results are 
consistent with figure 3(a). We remark that the spin glass phase of the j=J Ising model 
in two dimensions is sometimes called the random antiphase state [5-7,43,44]. Numerical 
evidence is accumulating for its existence [5-71. 

4.2. XY gauge glass 

Let us first consider the non-random classical XY (plane rotator) model; 

(4.19) 

where 0 = [0, Zn), with d p  (4;) = d@i. The set 0 forms a group isomorphic to O(2) if 
one defines the product operation by 

@ o + = @ + +  (mod%) (4.20) 

with $E = 0 and 4 = -4. 
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Following the general strategy in section 2, we derive the gauge-symmetric random 
model associated with the non-random model (4.19) by ineoducing quenched gauge 
variables. The Hamiltonian and the probability weight of the gauge-symmetric model, 
equations (4.4) and (4.5), are expressed as 

and 

(4.21) 

(4.22) 

where oij E LO, 2z). Then, from equations (4.8)-(4.10), we obtain 

I W , )  = 2ir2o(Kp) ~(4.23a) 

(4.236) 

(4.23c) 

.~ on K = K p .  where I m ( K p )  are the modified Bessel functions. 
The correlation functions in equation (2.34) are defined through the representation 

V(4) =e". (4.24) 

In the case of the nearest-neighbour interactions on hypercubic lattices, paramagnetic, 
ferromagnetic and gauge glass phases are expected to appear when d > 3 [24-29,45]. The 
phase diagram must have the same topology as in figure 3(a); the F boundary is vertical 
and intersects the OP boundary and the line K = K p  at the same point, a multicritical point. 
When d = 2, the KT phase exists in the low-temperature region of the non-random system 
[41,42]. If the KT phase extends into the finit? K p  region with the same properties proposed 
for the ferromagnetic phase in section 3.2, the phase diagram has a topology similar to that 
in figure 4; the KT boundarfis vertical and intersects the OP boundary and the line K = K ,  
at the same point. The gauge glass phase in the region K p  < Kc(0)  may not exist in two 
dimensions [?A, 251. 

Note that the +J-type random model 

(4.25) 

is not gauge symmetric in the case of the XY model. It is believed that the lower critical 
dimension of the AJ XY model is four or greater, although the possibility of a chirality 
glass transition has been pointed out for the fJ XY model in three dimensions [13-18]. 

Recently, the XY gauge glass of equation (4.21) hi% attracted much attention [1946]. 
A real-space renormalization group method was applied to find a reentrant transition in two 
and 2 + c  dimensions [19-21]. Experimental as well as Monte Carlo studies indicate no re- 
entrance [22,23,47,48] in two dimensions. A Migdal-Kadanoff-type renormalization group 
calculation in three dimensions also failed to discover re-entrance [29]. Our argument in the 
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present paper shows that the XY gauge glass has a vertical F boundary (or KT boundary), 
which means the absence of re-entrance. A few remarks are in order on this point. 

First, the present argument assumes the existence of a finite region of ferromagnetic (or 
KT) phase. If this ordered phase is unstable against weak gauge randomness as suggested 
in [46], the phase diagram will be filled simply with a paramagnetic state except at the 
non-random limit. 

A second remark is on the probability distribution function (4.22). In most of the 
theoretical studies referred to above, the probability distribution of the gauge variable wij is 
Gaussian. In particular, the renormalization group calculations [19-211 use the Gaussian wij 
and the Villain potential (a periodic Gaussian interaction) [49] instead of equations (4.21) 
and (4.22). Our argument also applies to such a case. If the pair interaction is the Villain 
potential 
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m _ _  
V($i - $j f wij) = log exp{-iK(@i - @j + o i j  - 2xn)’J (4.26) 

with @ i ,  @j E [O, 2 ~ )  and o i j  E R, the Gaussian probability distribution automatically 
acquires periodicity 

“=-CO 

(4.27) 

because the interaction (4.26) is not affected by the change of o i j  by k m .  Thus, one may 
regard &, @ j ,  oij E [0,2n). The interaction (4.26) and the probability weight (4.27) have 
the same form, which makes it possible to apply the general argument in section 2. We 
therefore conclude that the F boundary (or KT boundary) (if any) is vertical in this Villain 
model with Gaussian randomness. .. 

Reger and Young [SO] argued that the existence of transverse degrees of freedom may 
lead to re-entrance which is absent in the Ising case. The present argument shows that the 
mere existence of a transverse component is insufficient to induce re-entrance. 

4.3. 2, gauge glass 

Let the set @ be 

- [ T I m  = 0,1,. . . , q - 1 . 1 @ - -  (4.28) 

With the same operation as equation (4.20), aq forms the group Z,, a subgroup of O(2). 
The integration of the phase space becomes a summation as 

(4.29) 

If the Hamiltonian is chosen to be the same as in equation (4.19) with @i .E 04, it is 
usually called the q-state clock model. It reduces to the Ising model and the XY model 
when q = 2 and q -+ w, respectively. The HamiItonian and the probability weight of a 
gauge-symmetric random model are expressed by equations (4.21) and (4.22) with oij E @q 

and 

(4.30) 



Phase diagram of gauge glasses 3421 

The energy and a bound on the specific heat on K = K p  are calculated from equations (4.9), 
(4.10) and (4.30). The correlation functions (2.34) are defined through equation (4.24). 
In the case of the nearest-neighbour interactions on hypercubic lattices, paramagnetic, 
ferromagnetic and gauge  glass phases appear for q > 2 when d 3 3 [1-3,~24-29,51]. 
The phase diagram should have the same topology as in figure 3(a). The situation may be 
similar in two dimensions for 4 2 since the non-random system has a ferromagnetic 
phase in this c&e and the king (q = 2) model has a ferromagnetic and spin glass phases 
(often called the random antiphase state) [47]. When q > 5 in two dimensions, both m 
and ferromagnetic phases exist in lhe  low-temperature region of the non-random system 
[52-541. The phase diagram has the same topology as in figure 5. 

The non-random q-state Potts model has the Hamiltonian 

q 

(4.31) 

where S[., .I is Kronecker’s delta.  the Hamiltonian and the probability weight of the gauge. 
symmetric model [30], equations (4.4) and (4.5), are expressed as 

~ . . .  . 

(4.32) 

(4.33) 

where wij E Qq. Then, from equations (4.8)-(4,10), we obtain 

Z (Kp)=exn+q- l  (4.34~) 

(4.346) 

In the case of the nearest-neighbour interactions on hypercubic lattices, paramagnetic, 
ferromagnetic and gauge glass~phases may appear for q > 2 when d > 3 ~[Sl]. The 
correlation functions (2.34) are defined through equation (4.24). The phase diagram has the 
same topology as in figure 3(a). 

Note that the Hamiltonian (4.32) is invariint under a wider class of symmetry operation 
belonging to the ‘symmetric group’ of degree q. The group Z, is a subgroup of the 
symmetric group of degree q. Since the number of elements of the symmetric group of 
degree q is much larger than q, we cannot define the transformation U;) for that group. 
Although it is possible to define a gauge-symmetric random  model^ in which .each spin 
variable $i E Qq and each random variable ojj have a symmetry due to the symmetric 
group of degree q,  the resulting model is not in the present class of gauge-symmetric 
random models. 
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4.4. SU(2)  gauge glass 
The present theory can be applied to non-Abelian groups @. For example, the non-random 
Hamiltonian of  the nearest-neighbour S U ( 2 )  model is written by two-dimensional unitary 
matrices 4; E SU(2) [55]; 
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(4.35) 

Let us introduce a parametrization  of a 2 x 2 SU(2)  matrix by the Pauli matrices 

(4.36) 

(4.37) 

7 = (n. 72, ~ 3 ) .  

@; = U; + i7 . (4;); 
where (U;, q,, n;~, zi3) are four real variables on the ith site with 

U? + (4di . (@A = 1. 
Then the above Hamiltonian is rewritten as 

(4.38) 

which is equivalent to the O(4) model. The invariant measure is expressed as 
dfi(4i) + (@i)i . (4;); - 1 W i  d(4i); (4.39) 

where &(.) is the delta function. 

tions (4.4) and (4.5), are expressed as 
The Hamiltonian and the probability weight of the gauge-symmetric model, equa- 

(4.40) ‘HI@}lol = -J C Tr4wij@! 
W e A a  

and 

P ( K , ,  to]) = n ~ ( ~ , ) - ’ e x p ( ~ ~ ~ r w ~ ~ )  (4.41) 
Pj)EA.  

where mij E SU(2). Let o i j  = xij + i.r. yij. Then the Hamiltonian (4.40) is written as 

‘Hl4ll~) = -25 
W e A B  

From equations (4.8>-(4.10), we obtain 

 UP^ + ( @ I ) ;  . (4i) j )xi j  + (ui(@i)j - ~ j ( & ) ~ )  . yij. (4.42) 

on K = K p ,  where I,,,(Kp) are the modified Bessel functions. 
In the case of the nearest-neighbour interactions on hypercubic lattices, paramagnetic, 

ferromagnetic and gauge glass phases may appear for sufficiently large d. The correlation 
functions in equation (2.34) are defined through the representation of equation (4.18); in this 
case, @ is a 2 x 2 matrix. Then, from equation (4.36), fy forms the ordinary ferromagnetic 
correlation in the O(4) model 

= ~ @ O G  + (4d0 . (@i)d. (4.44) 
All results in section 3 apply to this SU(2) model. 
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4.5. SOS gauge glass 

The present theory can be applied to non-compact groups 0; an example is Z as an 
additive group. We need a slightly different formulation for non-compact groups because the 
normalization constant-c diverges. The formulation for the non-compact case is presented 
in the appendix. As an example, the SOS (solid-on-solid) Hamiltonian [56] is expressed as 

where f is a positive constant, Gi E Z, and 

(4.45) 

(4.46) 

The Hamiltonian and the probability weight of the gauge-symmetric model, equations (4.4) 
and (4.Q are expressed as 

(4.48) 

with o i j  E~Z. As shown in the~appendix, many results in sections 2 and 3 can be applied 
to such non-compact cases. The normalization factor is 

(4.49) 

and the internal energy and a bound on the specific heat under the condition K = K p  are 
derived as in equations (4.9) and (4.10). 

We do not discuss the topology of phase diagram, since it is not clear whether or not 
relevant order parameters can be expressed as in equation (2.34). 

- .  

5. Applications to pair interactions 11: Gaussian randomness for Abelian group 

In the present section, we restrict our attention to the case where @ is compact and Abelian, 
such as O(2) or Z,. Let us choose @ 5 [O,zlr)  with the operation (4.20). Irreducible 
representations are one-dimensional and unitary, y (6) =~eiK4. 

We introduce a new class of gauge-symmetric models associated with the non-random 
Hamiltonian of equations (4.1)-(4.3). The function E ( @ )  is expandea in general in the 
Fourier series as 

where a, z 0 and s, = i l .  The summation of equation (5.1) runs only over n with a. # 0. 
Let us assign'a random variable oij," E C for every pair (ij) and every n with a, fs 0. 

Thus Grot = CNBNa (Na is the number of non-zero an). The complex Gaussian distribution 
is given by 
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with the measure du (0) = & i j ) E h g  n,hw (wij,,J; the region of integration J dw (wij,,J is 
the whole complex plane, and 

(5.3) 
The symbols Re(.) and h(,) indicate the real and imaginary parts, respectively. In the 
usual notation, each variable is expressed by J and Jo: 

dw (6~ij.J = dRewlj,,, dlmwij,,. 

K = p J  (5.4u) 

Wij.n Jij,n/ J .  (5.4c) 

'WbHwl = -J  'I." c(*a-+ii) I. (5.5) 

K ,  = J o / J  (5.4b) 

The gauge-symmetric Gaussian random Hamiltonian associated with equation (4.1) with 
equation (5.1) is given as 

( i j lEhs n 

The gauge transformation Vl+l = n(ij)EAB nn'Vci; is constructed as the local 
transformation 

vY) : wij,.  --f w ! .  lJ.n = wij,.e'"* (5.6) 
by assuming i, =- j. Clearly, the measure dw ( ~ i j , ~ )  is invariant with respect to VY1 
for any fr E @. Note that K p  is assumed to be non-negative. From equation (5.6), the 
probability weight (5.2) is transformed as in equation (2.19) with 

and 
Y(K,)'INB = I(Kp) = n'exp(u,Ki/2) = exp (Z(O)K;/2) (5.8) 

" 

It is easy to see that the above system satisfies conditions I to V. Consequently, if the 
Hamiltonian is expressed by equation (4.1) with equations (4.2) and (4.3) and CJ is compact 
and Abelian, one can derive a gauge-symmetric random model of equations (5.2) and (5.5). 

The internal energy and a bound on the specific heat for K = Kp are obtained from 
equations (4.9) and (4.10): 

E(Ki,  K p )  = -NBJZ(O)K, = -NBZ(O)JO (5.10~) 

~ B T * c ( K , ,  K ~ )  < N ~ Z ( O ) J * .  (5.10b) 
Similarly to the class of models in section 4, the internal energy has no singularity, the 
specific heat does not diverge on K = Kp,  and the phase diagram has the same topology 
as in figure 3(u). 

In the case of the infinite-range model, NB = N ( N  - 1)/2. The parameters J and Jo 
are scaled as J + J / f l  and JO -f Jo/N so that the free energy is extensive. From 
equation (5.4), this scaling is equivalent to K --f K/& and K ,  --f Kp/v%. The 
parameter of the modified model is also needed to be scaled as a + U/&. Then the same 
arguments as before can be developed for the topology of phase diagram using these scaled 
parameters. 

. 
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5.1. Gaussian random Ising model 

The best studied model in this class is the king system, for example the infinite-range 
Sherrington-Kirkpatrick (SK) model, and its finitedimensional version [57-591. Let the 
interaction be 

E ( @ )  = cos @ (5.11) 

with @i E (0, H) = Qz and S, = exp(i@i). Then we have 

X = - J  Re(wij)SiSj ~ '(Si = f l )  (5.'12) 
(ij)€A, 

and 

1 
2 X  

where Wij E C. .Clearly. the imaginary part Imwij plays no role in this case. 
The energy and a bound on the specific heat on K = KF are obtained as in 

equation (5.10) with Z(0) = 1; The phase diagram has the same topology as in figure 3(u). 
The intemal energy of the replica symmetric solution of the SK model [59] is actually equal 
to equation (5.10~) if K = KF or P J 2  = Jo; The specific heat for K = K p  derived from the 
replica symmetric solution of the SK model is given by the right-hand side of equation (5.10b) 
in the paramagnetic phase and satisfies the inequality (5.10b) in the ferromagnetic phase. 
The b o u n d q  between the ferromagnetic (mixed) phase and the spin glass phase is vertical 
[33] as is required from our general considerations. 

.5.2. Other Gaussian random models 

Models in the same class are also defined for other Abelian groups. The gauge-symmetric 
Gaussian random XY model derived from equation (4119) is given by 

P ( K , ,  (0)) = n -exp[ - weoi j  - ~ ~ ) ~ / 2 -  (1moi~)2/2] (5.13) 
(i j )EAB 

(5.14) 

and the probability weight is equation (5.13) with oij  E @. The energy and a bound on the 
specific heat on K = KF are in equation (5.10) with Z(0) = 1. 

The gauge-symmetric Gaussian rando-m q-state clock model derived. from equa- 
tion (4.19) is also defined by equation (5.14) with @ E Qq (see equation (4.28)) and the 
probability weight of equation (5.13) with wij E C. The energy and the specific heat on 
K = K p  are obtained as in equation~(5.10) with Z(0) = 1. 

The gauge-symmetric Gaussian random, .q-state Potts model [303 derived from 
equation (4.19) is also defined by 

(5.15) 

with 4J E Qq and wij,n E @. The energy and a bound on the specific heat for'K = K, are 
given as in equation (5.10) with i(0) = 1. 

In each model, the phase diagram has a  vertical F boundary which, intersects the OP 
boundary and the line K = KF at the multicritical point. 
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6. Many-body interactions 

The random energy model [60] is obtained from the infiniterange king system with p-body 
interactions in the limit p + CO. The p = 2 case corresponds to the SK model. The present 
theory can be applied to many-body interactions if the set 0 is Abelian. 

For simplicity of presentation, we restrict our attention to the case of four-body 
interactions on eve@ plaquette on a d-dimensional hypercubic lattice. Let Ap c A4 be 
a set of Np plaquettes on A. The non-random Hamiltonian is assumed to be 
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with equations (4.2) and (4.3). where a plaquette ( i j k l )  is taken only once in the summation. 
We assign 

a random variable wijw E 0 to each plaquette, with which the measure dp(wijk1) is 
chosen to be the same as that of the spin degrees of freedom. Thus, Qmt = ONP,  and 
du [U] = l"'&j)EAB d p  (ojjxr). The Hamiltonian is set to be 

First, we introduce a class similar to the one discussed in section 4. 

with the probability weight 

The gauge transformation 

(6.4) 

is constructed from the local transformation defined by 

(6.5) 

where we assume i > j > k > 1. Note that V$ki:lkl) forms a group isomorphic to 0, and V,J., 
is homomorphic to QpN.  Thus, i t  is easy to see that the above system satisfies conditions I to 
V. Consequently, if the Hamiltonian is expressed by equation (6.1) with equations (4.2) and 
(4.3) and 0 is Abelian, one can derive a gaugesymmetric random model in equations (6.2) 
and (6.3). 

The normalization factor Y(K,) is obtained by equations (4.7) and (4.8) with NB 
replaced by N p .  Using the general result in equations (2.30b) and (2.31b), we find that 
the internal energy and a bound on the specific heat under the condition K = Kp are 
expressed by equations (4.9) and (4.10) with NB replaced by Np. Thus the internal energy 
has no singularity, the specific heat does not diverge if K = Kp, and the phase diagram has 
the same topology as in figure 3(a). 

It is possible to introduce the class of Gaussian randomness. If the function E(@)  is 
expressed by equation (5.1), the gauge-symmetric Gaussian random Hamiltonian is defined 

(ijkr) . + @!. - wijkf 
' J .  ' LJkl rikl - 

(" 

by 
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Each random variable wij& E C obeys the complex Gaussian distribution like 
equation (5.13). If the gauge transforhation (6.4) is constrncted~by the local transformation 
defined by 

(6.7) 

the above system satisfies conditions I to V. All results in sections 2 and 3 apply. In 
particu1a.f the random energy model with a non-symmetric Gaussian probability should 
satisfy these results. 

( i j kLn)  . v#, . mijkI.6 -+ mijki,, = fJJijk1,n 

7. Summary 

We have applied the method of gauge transformation to random spin systems with various 
kinds of symmetry. The conditions on the Hamiltonian and the probability weight of random 
configurations were derived so that the present theory is applicable. AI1 gauge-symmetric 
models share significant common properties; the internal energy and an upper bound on 
the specific beat have simple forms on a special line in the K,-K plane, where K is the 
effective coupling and K ,  controls the randomness. In the cases discussed in sections.5-7, 
it has been shown that the internal energy has no singularity and the specific heat does not 
diverge. Tf the low-temperature phase of the non-random .system extends into the weakly 
random case (Kp >> l), the phase boundary in the K,-K plane is vertical to the Kp axis, 
implying the lack of re-entrance (see figures 3(a), 4 and 5). We note that the conclusion 
on the vertical boundary has not been derived completely rigorously because we assumed 
the existence of a ferromagnetic phase in the modified model, a plausible but unproved 
property. The results on the internal energy and specific heat are free from any unproved 
assumptions. We have introduced several kinds of gauge-symmetric random models with 
symmetry groups including 0(2), 2, and SU(2)  as examples. 
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Appendix. Formulation without the normalization parameter c 

In the case with diverging c, we cannot use the equations involving c. such as 
equations (2.24) and (2.27). However, if the left-hand sides of these equations have finite 
values, one may modify these equations and derive many of the results which do not involve 
c. We can prove, for instance, equation (2.30b) without using~c as follows. From the first 
line of equation (2.300). 

E ( K ,  Kp) = - dvIwlP(KP, [wI)Z(K, {wl)- 'aZ(K,  {ol) I ?P 
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If K = K,, the two Zs cancel out to yield 

where we have used the invariance of equations (2.8~) and @.E), and the properties 
expressed in equations (2.18~) and (2.19). In general, one can prove for an arbitrary 
function R(@](o)  of ($1 and ( U )  that 

From equation (A.3) all results in section 2, such as equations (2.3 Ih), (2.38), (2.39), (2.45), 
(2.48)-(2.54), can be rederived without using c.  For instance, using equation (A.3), we find 
that 

[ ( ~ ~ @ ~ ~ 4 K ~ + o l , p  = {(vc")I4), lip. (A.4) 

If R ( @ ) ( w ]  is independent of [@] (to be written as'Q(o}) and gauge invariant, we find from 
equation (A.4) 

[Qbl],, = {Qb}}", (-4.5) 

which is equivalent to equation (2.45). 
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